Rational Isomorphisms between K-theories and Cohomology Theories

نویسندگان

  • Eric M. Friedlander
  • Mark E. Walker
  • MARK E. WALKER
چکیده

The well known isomorphism relating the rational algebraic K-theory groups and the rational motivic cohomology groups of a smooth variety over a field of characteristic 0 is shown to be realized by a map (the “Segre map”) of infinite loop spaces. Moreover, the associated Chern character map on rational homotopy groups is shown to be a ring isomorphism. A technique is introduced which establishes a useful general criterion for a natural transformation of functors on quasi-projective complex varieties to induce a homotopy equivalence of semi-topological singular complexes. Since semi-topological K-theory and morphic cohomology can be formulated as the semi-topological singular complexes associated to K-theory and motivic cohomology, this criterion provides a rational isomorphism between the semi-topological K-theory groups and the morphic cohomology groups of a smooth complex variety. Consequences include a Riemann-Roch theorem for the Chern character on semitopological K-theory and an interpretation of the “topological filtration” on singular cohomology groups in Ktheoretic terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersymmetric field theories and generalized cohomology

This paper is a survey of our mathematical notions of Euclidean field theories as models for (the cocycles in) a cohomology theory. This subject was pioneered by Graeme Segal [Se1] who suggested more than two decades ago that a cohomology theory known as elliptic cohomology can be described in terms of 2-dimensional (conformal) field theories. Generally what we are looking for are isomorphisms ...

متن کامل

An Algebraic Model for Rational S-equivariant Stable Homotopy Theory

Greenlees defined an abelian category A whose derived category is equivalent to the rational S1-equivariant stable homotopy category whose objects represent rational S1equivariant cohomology theories. We show that in fact the model category of differential graded objects in A models the whole rational S1-equivariant stable homotopy theory. That is, we show that there is a Quillen equivalence be...

متن کامل

Relative (co)homology of $F$-Gorenstein modules

We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.

متن کامل

Group cohomology and control of p–fusion

We show that if an inclusion of finite groups H ≤ G of index prime to p induces a homeomorphism of mod p cohomology varieties, or equivalently an F–isomorphism in mod p cohomology, then H controls p–fusion in G, if p is odd. This generalizes classical results of Quillen who proved this when H is a Sylow p–subgroup, and furthermore implies a hitherto difficult result of Mislin about cohomology i...

متن کامل

Bivariant K-theory via Correspondences

We use correspondences to define a purely topological equivariant bivariant K-theory for spaces with a proper groupoid action. Our notion of correspondence differs slightly from that of Connes and Skandalis. We replace smooth K-oriented maps by a class of K-oriented normal maps, which are maps together with a certain factorisation. Our construction does not use any special features of equivaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002